First Course in Random Matrix Theory

First Course in Random Matrix Theory

for Physicists, Engineers and Data Scientists

Potters, Marc; Bouchaud, Jean-Philippe

Cambridge University Press

12/2020

370

Dura

Inglês

9781108488082

15 a 20 dias

820

Descrição não disponível.
Preface; Part I. Classical Random Matrix Theory: 1. Deterministic Matrices; 2. Wigner Ensemble and Semi-circle Law; 3. More on Gaussian Matrices; 4. Wishart Ensemble and Marcenko-Pastur Distribution; 5. Joint Distribution of Eigenvalues; 7. The Jacobi Ensemble; Part II. Sums and Products of Random Matrices: 8. Addition of Random Variables and Brownian Motion; 9. Dyson Brownian Motion; 10. Addition of Large Random Matrices; 11. Free Probabilities; 12. Free Random Matrices; 13. The Replica Method; 14. Edge Eigenvalues and Outliers; Part III. Applications: 15. Addition and Multiplication: Recipes and Examples; 16. Products of Many Random Matrices; 17. Sample Covariance Matrices; 18. Bayesian Estimation; 19. Eigenvector Overlaps and Rotationally Invariant Estimators; 20. Applications to Finance; Appendix A. Appendices: Mathematical Tools; List of Symbols; Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.