Electronic Structure
-10%
portes grátis
Electronic Structure
Basic Theory and Practical Methods
Martin, Richard M.
Cambridge University Press
08/2020
788
Dura
Inglês
9781108429900
15 a 20 dias
1630
Descrição não disponível.
Preface; Acknowledgments; Notation; Part I. Overview and background topics: 1. Introduction; 2. Overview; 3. Theoretical background; 4. Periodic solids and electron bands; 5. Uniform electron gas and sp-bonded metals; Part II. Density functional theory: 6. Density functional theory: foundations; 7. The Kohn-Sham auxiliary system; 8. Functionals for exchange and correlation I; 9. Functionals for exchange and correlation II; Part III. Important preliminaries on atoms: 10. Electronic structure of atoms; 11. Pseudopotentials; Part IV. Determination of electronic structure: the basic methods: 12. Plane waves and grids: basics; 13. Plane waves and real space methods: full calculations; 14. Localized orbitals: tight-binding; 15. Localized orbitals: full calculations; 16. Augmented functions: APW, KKR, MTO; 17. Augmented functions: linear methods; 18. Locality and linear scaling O(N) methods; Part V. From Electronic Structure to Properties of Matter: 19. Quantum molecular dynamics (QMD); 20. Response functions: phonons, magnons, . . .; 21. Excitation spectra and optical properties; 22. Surfaces, interfaces, and lower dimensional systems; 23. Wannier functions; 24. Polarization, localization, and Berry phases; Part VI. Electronic Structure and Topology: 25. Topology of the electronic structure of a crystal: introduction; 26. Two band models: Berry phase, winding and topology; 27. Topological insulators I: Two dimensions; 28. Topological insulators II: Three dimensions; Part VII. APPENDICES: A. Functional equations; B. LSDA and GGA functionals; C. Adiabatic approximation; D. Perturbation Theory, response functions and Green's functions; E. Dielectric functions and optical properties; F. Coulomb interactions in extended systems; G. Stress from electronic structure; H. Energy and stress densities; I. Alternative force expressions; J. Scattering and phase shifts; K. Useful relations and formulas; L. Numerical methods; M. Iterative methods in electronic structure; N. Two-center matrix elements: expressions for arbitrary angular momentum l; O. Dirac equation and spin-orbit interaction; P. Berry phase, curvature and Chern numbers; Q. Quantum Hall effect and edge conductivity; R. Codes for electronic structure calculations for solids; References; Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Preface; Acknowledgments; Notation; Part I. Overview and background topics: 1. Introduction; 2. Overview; 3. Theoretical background; 4. Periodic solids and electron bands; 5. Uniform electron gas and sp-bonded metals; Part II. Density functional theory: 6. Density functional theory: foundations; 7. The Kohn-Sham auxiliary system; 8. Functionals for exchange and correlation I; 9. Functionals for exchange and correlation II; Part III. Important preliminaries on atoms: 10. Electronic structure of atoms; 11. Pseudopotentials; Part IV. Determination of electronic structure: the basic methods: 12. Plane waves and grids: basics; 13. Plane waves and real space methods: full calculations; 14. Localized orbitals: tight-binding; 15. Localized orbitals: full calculations; 16. Augmented functions: APW, KKR, MTO; 17. Augmented functions: linear methods; 18. Locality and linear scaling O(N) methods; Part V. From Electronic Structure to Properties of Matter: 19. Quantum molecular dynamics (QMD); 20. Response functions: phonons, magnons, . . .; 21. Excitation spectra and optical properties; 22. Surfaces, interfaces, and lower dimensional systems; 23. Wannier functions; 24. Polarization, localization, and Berry phases; Part VI. Electronic Structure and Topology: 25. Topology of the electronic structure of a crystal: introduction; 26. Two band models: Berry phase, winding and topology; 27. Topological insulators I: Two dimensions; 28. Topological insulators II: Three dimensions; Part VII. APPENDICES: A. Functional equations; B. LSDA and GGA functionals; C. Adiabatic approximation; D. Perturbation Theory, response functions and Green's functions; E. Dielectric functions and optical properties; F. Coulomb interactions in extended systems; G. Stress from electronic structure; H. Energy and stress densities; I. Alternative force expressions; J. Scattering and phase shifts; K. Useful relations and formulas; L. Numerical methods; M. Iterative methods in electronic structure; N. Two-center matrix elements: expressions for arbitrary angular momentum l; O. Dirac equation and spin-orbit interaction; P. Berry phase, curvature and Chern numbers; Q. Quantum Hall effect and edge conductivity; R. Codes for electronic structure calculations for solids; References; Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.